
Generating Approximate Boolean Functions
Alexandre R. Crestani1, Gabriel Ammes1, Paulo F. Butzen2 and Renato P. Ribas1

1Institute of Informatics and 2 School of Engineering
{alexandre.crestani, gabriel.ammes, rpribas}@inf.ufrgs.br, paulo.butzen@ufrgs.br.

Universidade Federal do Rio Grande do Sul
Porto Alegre, Brazil

ABSTRACT

Approximate computing is an emerging design paradigm
targeting error-resilient applications. The main objective is to
trade the precision of the results for improvements in energy
consumption, in the physical size of the circuit, and in the
time taken to compute a given task. This paper proposes
an approximate logic synthesis approach under error rate
and literals reduction rate constraints. The basic idea of our
approach is to pick input variables in a Boolean function
and shrink them by modifying these variables attributes. We
propose two different methods to implement the basic idea.
The first algorithm deletes the chosen variable, and the second
one turns the variable into a 0 or 1 constant value. We
compare the results with the original Boolean function. The
experimental results demonstrate that turn the variable into a
constant performs better than delete it, obtaining less error rate
with higher literals reduction rate.

Keywords: Logic synthesis, Approximate computing

I. INTRODUCTION

In the current world, applications involving digital signal
processing, multimedia processing, data analysis, machine
learning, and others, are more present in our lives. These
applications are what we call Error-Resilient Applications [1].
Due to the large and growing use of these applications, it is
interesting to develop new tools, methods and techniques to
take advantage of this application characteristic.

Approximate computing is a paradigm that trades-off the
computational system accuracy by its cost and performance
[2]. The use of approximate computing in systems executing
error-resilient applications enables the optimization of the
system without impacting the quality of the output. The
application of approximate computing over the circuit level
of a system generates approximate circuits—. The automatic
generation of approximate circuit is called Approximate Logic
Synthesis (ALS) [3]. ALS techniques aim to obtain an approxi-
mate circuit for a given original circuit and an error constraint.

There are ALS works that approximate a given circuit by
removing input signals of sub-circuits from the original circuit.
Wu and Qian [4] present an ALS approach that obtain a
two-level expression of sub-circuits from the original circuit
and removes literals from this expression to approximate the
circuit. Wu et al. [5] propose an ALS approach that removes
input signals of sub-circuits of a LUT-mapped circuit to reduce
the number of LUTs in the approximate circuit.

In this work, we propose an ALS approach that approxi-
mates a circuit represented by a Boolean expression removing
the input variable and replacing input variables for constant
values. To evaluate the trade-off between accuracy and circuit
optimization we obtain the literal reduction and the error rate
in the approximate circuit.

The rest of the paper is organized as follows. Section II
review the concepts needed to understand and follow the pro-
posed method. Section III explains the proposed method and
how it was implemented. Section IV presents and discusses
the obtained results. Finally, Section V concludes this paper.

II. BACKGROUND

This section will introduce notation and preliminary con-
cepts necessary to understand this work. It gives the reader
a brief about Boolean Function, Logic Trees, Error Rate and
Literal Reduction Rate.

A Boolean Function is a function whose arguments, as well
as the function itself, assumes values from a two-element set
representing True or False (usually {1, 0}) and it takes the
form of F : {0, 1}k → {0, 1}, where k assume an non negative
integer and represents the number of variables in the function.

Therefore, there are 2k different possible truth tables for
a k entries function. It is defined as Truth Table the table
used to better comprehend and visualize the Boolean outputs
of a given function. Illustration of a truth table for the given
example, function F, in Table I.

A Boolean function can be expressed as a directed acyclic
graph (DAG). It consists of several nodes representing a
logic decision that must be taken in the current analysed
variable and two terminal nodes. This structure represents the
Boolean result of such combination of variable values and
logic operators. Due the similarities with a Binary Tree it is
called Logic Tree. For example, the following function can
be expressed using Logic Tree, as shown in Fig. 1:

Error Rate is the result of dividing the number of wrong
cases by the number of possible cases. It is calculated by
A/2k, where A is the number of different outputs between
two truth tables and n is the function’s number of inputs.

Literal Reduction Rate is the amount of literals remained
from a modified function (A) compared to the amount of lit-
erals counted on the original one (B). This metric is important
to better visualize the size of the modified circuit compared
to the original one. It is calculated by 1−A/B.

TABLE I
TRUTH TABLE OF THE FUNCTION F (a, b, c) = a ∗ b ∗ c+ b ∗ (a+ c)

a b c F
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

F

+

*

!

a

*

!

b

!

c

*

b +

a c

Fig. 1. Logic Tree representation of F function.

III. PROPOSED METHODS

ALS explores the concept of generating acceptable errors
in Boolean Function to improve circuit metrics as area, power
and performance. We investigate deleting/fixing a variable in
terms of literal count reduction and error insertion. Our method
changes a variable for a constant value or removes a variable
and then calculates the number of literals of approximate
function and the error rate.

We implemented the above presented ideas. The imple-
mented algorithm consists in, given a Boolean expression in
a String format, approximate it and calculates the Error Rate
and the approximated Boolean function. To do it the software
converts the Boolean expression into a Logic Tree. Then, it
operated the Logic Tree to approximate it and to obtain the
number of literals and minterms of the approximated Boolean
function.

The main approaches used to realize our approximation are:
• Constant Substitution: Replace all logic tree leaves that

contains the given variable for a constant 0 or 1.
• Variable Removal: Removes all leaves containing the

given variable.
• Constant Propagator: Simplify the logic tree as much

as possible after modify the Boolean function.
• Dangling Swept: Modify the logic tree with nodes with

less than the minimum number of inputs.
• Literals Count: Returns the number of literals (leaves)

of a logic tree.
• Get Minterms: Returns the minterms covered by the

Boolean function represented by the logic tree.

A. Constant Approximation
To perform the constant substitution approximation, it is ap-

plied the constant substitution approach to change all variables
occurrences on the leaves of the logic tree for a constant value.
Than it is necessary to simplify the logic tree considering
these constants leaves. The constant propagation approach was
implemented to do these simplifications. The modifications on
the logic tree are based on the Boolean equivalences presented
in Table II.

TABLE II
BOOLEAN EQUIVALENCES.

Original Equivalent
a ∗ 0 0
a ∗ 1 a
a+ 0 a
a+ 1 1

Lets analyse the behavior of the Logic Tree class doing
some simplifications after receives the command to change the
variable c for the constant value 1. Modified Boolean function
representation below, at Fig. 2.

F

+

*

!

a

*

!

b

!

1

*

b +

a 1

Fig. 2. Logic Tree of F changing c for 1.

In this particular case the first thing it does is simplify the
b∗1 and the a+1 factors. Reaching the representation bellow,
at Fig. 3.

F

+

*

!

a

0

*

b 1

Fig. 3. Logic Tree of F changing c for 1. Step 1 of the simplification.

As the logic tree still have more simplifications available, it
does it again and again until it get as simple as possible. The
next step is to simplify the a ∗ 0 and b ∗ 1, getting Fig 4.

F

+

0 b

Fig. 4. Logic Tree of F changing c for 1. Step 2 of the simplification

Then it does the final simplification for the current example.
Simplify the 0+ b, getting its final form as represented at Fig.
5.

F

b

Fig. 5. Logic Tree of F changing c for 1. Step 3 of the simplification

Therefore, given F (a, b, c) = a∗b∗c+b∗(a+c), the target
variable c and by following the steps above we get the follow
function by turning this variable into 1:

F1(a, b, c) = b

B. Variable Removal

The Removal Variable procedure is based on the change
variable steps previously presented. However, instead of set the
value of the nodes which once contained the target variable,
now these nodes are excluded from the Boolean Function.

Note that when a variable is deleted, the logical operator
which once connected this variable to another variable or sub-
tree is also deleted. Therefore, excluding a variable is the same
as replace the operators node which connects the variable to
a sub-tree for this sub-tree.

To illustrate the procedure, lets consider the same Boolean
Function used before and delete the variable c. In Fig. 6 we
can see the illustration of the nodes affected by the variable
to be deleted. Fig. 7 shows the Logic Tree after in fact delete
the variable.

F

+

*

!

a

*

!

b

!

c

*

b +

a c

Fig. 6. Logic Tree of F with the nodes affected by deleting c highlighted.

F

+

*

!

a

!

b

*

b a

Fig. 7. Logic Tree of F after deleting c.

Therefore, given the original Boolean function F (a, b, c) =
a ∗ b ∗ c+ b ∗ (a+ c), the target variable c and following the
simplification steps, we get

Fr(a, b, c) = a ∗ b+ b ∗ a

C. Error Rate Calculation

The Error Rate is computed dividing the difference between
the True outputs from the original Boolean function and the
modified ones by the total number of possible outputs from
the given Boolean Function.

Let A be a set containing minterms that are True outputs on
the original function. Let B a set containing all minterms that
are True outputs on the modified function. Be n the number
of variables of this function. The Error Rate is calculated by
the following steps:

1) Set the number of elements in (A−B∪B−A) as DIFF.
2) Set the number of total possible outputs (2n) as TOTAL.
3) Calculate the Error Rate doing DIFF/TOTAL

The example bellow illustrates the previous steps. We
compare and calculate the error of the functions (original and
modified ones) previously used in this work.

TABLE III
TRUTH TABLE OF THE ORIGINAL FUNCTION

(F (a, b, c) = a ∗ b ∗ c+ b ∗ (a+ c)

a b c F
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Now we can clearly see the difference between the outputs
and the function representation itself of the original and the
modified function.

Let:
• ER1 be the error rate comparing F and F1.
• A be the set of outputs in F .
• B1 be the set of outputs in F1.
Then, using all Error Rate Calculations concepts defined in

this subsection, we calculate:

TABLE IV
TRUTH TABLE OF THE MODIFIED FUNCTION F1(a, b, c) = b

a b c F
0 0 1 0
0 0 1 0
0 1 1 1
0 1 1 1
1 0 1 0
1 0 1 0
1 1 1 1
1 1 1 1

ER1 = |(A−B1 ∪B1 −A)|/2n
= |([0, 3, 6, 7]− [2, 3, 6, 7] ∪ [2, 3, 6, 7]− [0, 3, 6, 7])|/23
= |([0] ∪ [2])|/8 = 2/8 = 25%
To summarize, error rate is the amount of different outputs

divided by the amount of possible outputs, as shown above.
In this case the method returned a 25% error rate.

IV. RESULTS

All three described operations were applied to each vari-
able belonging to each analyzed Boolean function. The im-
plemented software was run once for each of these cases,
generating data for an analysis. In that way, the computational
cost grows with the function’s number of inputs.

The idea is to get not just the Error Rate that occurs for
each case, but also get the amount of literals that appears in
those cases. With these data we can also calculate the Literals
Reduction Rate, as already explained before. We applied our
method over 8 function: four generic functions, the functions
of each output of the C17 circuit from ISCAS’85 benchmarks,
the function of the carry chain of a Carry-lookahead adder and
the function of the Z9sym circuit from IWLS’93 benchmarks.

The Table V summarizes the obtained results. This table is
divided in nine sections, as follows.

The first column keeps original function. The second col-
umn, the target variable. From the third to the fifth, the error
rate generated by, respectively, delete, turn to 0 and turn to 1.
The sixth column keeps the original amount of literals. From
the seventh to the ninth keeps the amount of literals on the
modified functions keeping the same order from third to fifth.

From the presented results, it is possible to note that deleting
a variable lead to worst results when compared to the solutions
that fixed it in 0 or 1. The solutions that set the variable as 0
or 1 always shows the same error rate. The difference between
them can be observed in the literal reduction.

As introduced, same error rates can occurs when applying
each procedure over the same function and variable, but the
amount of literals can be different. As example, for the third
function, meanwhile the remove variable method returned a
function with four literals, the change to 1 method returned
a function with only 1 literal. Respectively, this represents a
Literals Reduction Rate of 33.33% and 83.33%. It shows us
that, for the variable c in target of this Boolean function, the
change to 1 method is better than the delete variable method.

V. CONCLUSIONS

In this work we investigates the efficiency of approximating
Boolean functions generation in terms of error rate and literal
reduction considering three different strategies. An exhaustive
analysis were performed in some benchmarks functions and
the results indicate the strategies of fixing the variables to 0
or 1 as the best alternatives.

ACKNOWLEDGMENT

This study was financed by the Conselho Nacional de
Desenvolvimento Cientı́fico e Tecnológico (CNPq).

TABLE V
RESULTS OF APPLYING THE THREE PROPOSED PROCEDURES FOR EACH

VARIABLE OF THE AIMED FUNCTIONS.

Function Var Error Rate Literals
rem to 0 to 1 orig rem to 0 to 1

!(a ∗ b) a 25,0% 25,0% 25,0% 2 1 0 1
b 25,0% 25,0% 25,0% 2 1 0 1
a 12,5% 12,5% 12,5% 3 2 0 2

!(a ∗ b ∗ c) b 12,5% 12,5% 12,5% 3 2 0 2
c 12,5% 12,5% 12,5% 3 2 0 2

!a∗!b∗!c+ a 25,0% 25,0% 25,0% 6 4 4 1
b ∗ (a + c) b 50,0% 50,0% 50,0% 6 4 2 2

c 25,0% 25,0% 25,0% 6 4 4 1
a 6,2% 6,2% 6,2% 4 3 3 0

!(a + b + c + d) b 6,2% 6,2% 6,2% 4 3 3 0
c 6,2% 6,2% 6,2% 4 3 3 0
d 6,2% 6,2% 6,2% 4 3 3 0

C17y0 a 18,7% 18,7% 18,7% 5 4 3 4
!(!(a ∗ c)∗ b 31,2% 31,2% 31,2% 5 4 2 3

!(b∗!(c ∗ d))) c 18,7% 18,7% 18,7% 5 3 1 4
d 6,2% 6,2% 6,2% 5 4 3 4

C17y1 a 18,7% 18,7% 18,7% 6 5 3 5
!(!(a∗!(b ∗ c))∗ b 18,7% 18,7% 18,7% 6 4 2 4
!(d∗!(b ∗ c))) c 18,7% 18,7% 18,7% 6 4 2 4

d 18,7% 18,7% 18,7% 6 5 3 5
C0 0,2% 0,2% 0,2% 15 14 10 11
G0 0,6% 0,6% 0,6% 15 14 11 12
G1 2,1% 2,1% 2,1% 15 14 12 13
G2 8,4% 8,4% 8,4% 15 14 13 14

CLA Carry G3 33,3% 33,3% 33,3% 15 14 14 0
P0 0,2% 0,2% 0,2% 15 14 10 14
P1 0,9% 0,9% 0,9% 15 13 6 14
P2 4,1% 4,1% 4,1% 15 12 3 14
P3 16,6% 16,6% 16,6% 15 11 1 14
a 19,1% 10,9% 10,9% 334 296 208 206
b 12,1% 10,9% 10,9% 334 287 217 210
c 11,3% 10,9% 10,9% 334 302 200 238
d 10,9% 10,9% 10,9% 334 326 208 253

Z9sym e 10,9% 10,9% 10,9% 334 330 202 167
f 10,9% 10,9% 10,9% 334 306 156 156
g 15,2% 10,9% 10,9% 334 278 177 188
h 17,1% 10,9% 10,9% 334 269 204 178
i 15,2% 10,9% 10,9% 334 278 219 179

REFERENCES

[1] V. Chippa, S. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approximate
computing.” in 2013 Design Automation Conference (DAC), 2013.

[2] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys, vol. 48, no. 4, 2016.

[3] I. Scarabottolo, G. Ansaloni, G. A. Constantinides, L. Pozzi, and S. Reda,
“Approximate logic synthesis: A survey,” Proceedings of the IEEE, vol.
108, no. 12, pp. 2195–2213, 2020.

[4] Y. Wu and W. Qian, “Alfans: Multilevel approximate logic synthesis
framework by approximate node simplification,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 7,
pp. 1470 – 1483, 2020.

[5] Y. Wu, C. Shen, Y. Jia, and W. Qian, “Approximate logic synthesis for
FPGA by wire removal and local function change.” in 2017 Asia and
South Pacific Design Automation Conference (ASP-DAC), 2017.

